太陽輻射比例的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列訂位、菜單、價格優惠和問答集

太陽輻射比例的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦(加)瓦茨拉夫·斯米爾寫的 人人都該懂的能源新趨勢 和張天蓉的 第一支火箭:被戰火推進的航太史都 可以從中找到所需的評價。

另外網站到達地面的太陽總輻射與大氣上界的總輻射相比有何不同,為什麼也說明:所以大氣因直接吸收太陽輻射能而引起的增溫並不顯著。 大氣中的主要氣體是氮和氧,只有氧能微弱地吸收太陽 ... 總體強度減弱,可見光佔的比例增加。

這兩本書分別來自浙江教育 和崧燁文化所出版 。

國立暨南國際大學 應用材料及光電工程學系 詹立行所指導 陳子桓的 多功能性的咪唑離子液體作為添加劑以及介面修飾對於反式鈣鈦礦太陽能電池元件效率之改善 (2021),提出太陽輻射比例關鍵因素是什麼,來自於反式鈣鈦礦太陽能電池、添加劑、離子液體、1-乙基-3-甲基溴化咪唑、1-乙基-3-甲基硫氰酸根咪唑、1-乙基-3-甲基咪唑 4,5二氰基咪唑。

而第二篇論文國立中央大學 工業管理研究所 王啟泰所指導 胡秋艾的 結合再生能源與魚菜共生以實現食物永續生產 (2021),提出因為有 魚菜共生、永續農業、再生能源、數學規劃、溫室氣體的重點而找出了 太陽輻射比例的解答。

最後網站一片雲遮住,就能讓太陽能跳電!靠AI 偵測「太陽輻射」 - 報橘則補充:根據經濟部能源局統計,去(2020)年台灣再生能源比例中,太陽能佔最多,達到39.8%,其次為風力(15.9%),若能靠著監測太陽輻射提高預報準確率, ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了太陽輻射比例,大家也想知道這些:

人人都該懂的能源新趨勢

為了解決太陽輻射比例的問題,作者(加)瓦茨拉夫·斯米爾 這樣論述:

能量既不會產生也不會消失嗎?如果沒有太陽,地球上還會有生命嗎?人類的能量來源以及代謝的比例如何?現代文明越來越依賴什麼能源?常生活中必需的能量輸入是什麼?全球年均耗能是多少?到目前為止da規模的可再生能源是什麼? 《人人都該懂的能源新趨勢》從我們所認知的能量,生物圈中的能量,人類歷史中的能量,現代世界中的能量,日常生活中的能量,以及未來的能量等6個方面解讀能源的歷史、現狀及未來,讓你對無處不在的能源獲得一個的認知,為你解答以上關於能源的種種疑惑,助你讀懂能源的前世今生,尋獲人類的未來之路。 瓦茨拉夫·斯米爾(Vaclav Smil) 加拿大皇家學會(科學院)會員,曼尼托巴

大學特聘的榮譽退休教授。一直以來從事能源、環境和人口變化方面的研究,已經出版了食物生產及營養等方面的30多本專著,並發表了500多篇論文。 1.我們所認知的能量:熱力學定律和度量方法 能量科學化 能量,轉化,效率 量化單位的必要性 2.生物圈中的能量:大自然的運作方式 太陽輻射及地球“退還”的能量 空氣和水,能量運動的媒介 地球的熱能,重塑地球的力量 光合作用:反應與速率 異養生物的新陳代謝和位置移動 能量網與能量流,生態系統中的能量 3.人類歷史中能量:肌肉、工具和機器 人類的能量:食物、代謝、活動 覓食型社會:採集者、狩獵者、漁獵者 傳統農業的基礎步 生物質燃料,熱

與光之源 工業化之前的城市:運輸和製造 機器的崛起 4.現代世界中的能量:化石燃料驅動的文明 煤,種化石燃料 原油,開啟內燃機時代 石油與天然氣,這個時代的碳氫化合物 電能,清潔能源的 電能的兩大源頭 能量與環境 5.日常生活中的能量:從膳食到電子郵件 食物攝入:能量的延續與轉變 家用能量:熱、光、運動和電子設備 交通運輸的能量:道路汽車和火車 高飛遠舉的強大能量:飛機 隱含能量:商品的能量成本 全球相互依存,能量的連鎖關係 6.未來的能量:趨勢和不可預測的未知 能量需求,差異、轉變和局限 可再生能源:生物質能、水能、風能、太陽能 不可能的預測

多功能性的咪唑離子液體作為添加劑以及介面修飾對於反式鈣鈦礦太陽能電池元件效率之改善

為了解決太陽輻射比例的問題,作者陳子桓 這樣論述:

目次摘要 . ............................................................... iAbstract .............................................................iii目次 .................................................................v表目次 ..............................................................viii圖目次 ..........

....................................................ix第一章、緒論 ........................................................1 1.1 前言.........................................................1 1.2 太陽能電池之背景沿革以及工作原理............................3 1.3 太陽能電池之種類介紹 ........................................5

1.3.1 第一世代太陽能電池(結晶矽基板型)........................7 1.3.2 第二世代太陽能電池(薄膜型)...............................71.3.3 第三世代太陽能電池(新興技術導入型).......................8 1.4 鈣鈦礦太陽能電池背景沿革之介紹..............................9 1.5 鈣鈦礦太陽能電池種類及工作原理............................10 1.5.1 傳統式鈣鈦礦太陽能電池..............

...................11 1.5.2 反式鈣鈦礦太陽能電池.................................11第二章、文獻回顧....................................................13 2.1胺鹽添加劑製程..............................................13 2.2路易士鹼添加劑製程...........................................17 2.3擬鹵素離子添加劑製程........................

..................25 2.4離子液體(Ionic liquid)之添加劑製程............................... 30 2.5研究動機..................................................... 42第三章、實驗部分 ...................................................44 3.1 離子液體(IL)合成.......................................44 3.1.1 1-乙基-3-甲基硫氰酸根咪唑(EM

IMSCN)合成............44 3.1.2 1-乙基-3-甲基咪唑 4,5二氰基咪唑(EMIMDCI)合成............44 3.2 鈣鈦礦太陽能電池元件製備.....................................47 3.2.1 ITO玻璃基板之清洗 .................................47 3.2.2電洞傳輸層(electron hole transporting layer)製備...............47 3.2.3鈣鈦礦主動層(active laye

r)製備.............................48 3.2.4電子傳輸層(electron transporting layer)製備....................48 3.2.5 金屬電極製備 ........................................49 3.3 實驗用藥品與溶劑.............................................49 3.3.1 藥品清單...............................................49

3.3.2 溶劑清單...............................................50 3.4 實驗儀器 ....................................................51第四章、結果與討論 .................................................. 55 4.1.1 (EMIMBr)IL添加劑對鈣鈦礦太陽能電池元件光伏性能之影響.. 55 4.1.2 (EMIMBr)IL添加劑對鈣鈦礦薄膜結晶度及晶體形貌之影響..58 4.1.3 (EMIMBr

)IL添加劑對鈣鈦礦薄膜光學吸收度及載子傳輸性能之影 響............................................. 61 4.2.1 (EMIMDCI)IL添加劑對鈣鈦礦太陽能電池元件光伏性能之影響.. ......................................................... 66 4.2.2 (EMIMDCI)IL添加劑對鈣鈦礦薄膜結晶度及晶體形貌之影響 ...............................................

.......68 4.2.3 (EMIMDCI)IL添加劑對鈣鈦礦薄膜光學吸收度及載子傳輸性 能之影響............................................. 72 4.3.1 (EMIMSCN)IL添加劑對鈣鈦礦太陽能電池元件光伏性能之影響.. ......................................................... 76 4.3.2 (EMIMSCN)IL添加劑對鈣鈦礦薄膜結晶度及晶體形貌之影 響...................

..................................78 4.3.3 (EMIMSCN)IL添加劑對鈣鈦礦薄膜光學吸收度及載子傳輸 性能之影響............................................. 82 4.4 綜合討論..................................................... 86第五章、結論 ....................................................... 91參考文獻 ......................

......................................92表目次表2.1不同比例之添加劑的鈣鈦礦太陽能電池之光伏性能表................16表2.2添加各項胺鹽之元件光伏參數表..................................18表2.3添加不同濃度碘化咪唑之鈣鈦礦元件光伏參數表現...................23表2.4未添加以及添加咪唑之鈣鈦礦元件光伏參數表現.....................25表2.5 CH3NH3PbI3 以及CH3NH3PbI3-x(SCN)x元件之光伏性能表..............26表2.

6未添加以及添加KSCN、NaSCN之鈣鈦礦元件光伏參數之表現..........28表2.7各個添加比例之鈣鈦礦元件之光伏參數表現.........................30表2.8添加BMII之元件光伏參數表現....................................34表2.9 BMIMBF4元件光伏性能參數表....................................35表2.10各添加濃度之元件光伏參數......................................38表2.11有無IL修飾之元件光伏參數表...............

....................41表4.1添加不同濃度EMIMBr之元件光伏參數表(括號中為最佳表現之元件)....56表4.2添加不同濃度EMIMDCI之元件光伏參數表(括號中為最佳表現之元件)...67表4.3添加不同濃度EMIMSCN之元件光伏參數表(括號中為最佳表現之元件)..77表4.4三種離子液體添加劑最佳添加比之元件的光伏參數比較表............87表4.5三種離子液體添加劑之元件的開路電壓比較表.......................88表4.6三種離子液體添加劑之元件的短路電流比較表.......................90圖目次圖1.1 2

019~2025年我國發電配比圖 ......................................2圖1.2 金屬、半導體、絕緣體能隙示意圖..................................4圖1.3 太陽輻射光譜....................................................5圖1.4 太陽能電池基本工作原理示意圖....................................5圖1.5 截至2021年初的各類型太陽能元件最高效率圖表.....................6圖1.6 三代太陽能電池分類圖....

........................................6圖1.7鈣鈦礦晶體結構示意圖............................................9圖1.8 傳統式(a)與反式(b)鈣鈦礦太陽能電池示意圖.....................11圖2.1最佳添加比例的元件數據.........................................14圖2.2未添加(a)以及最佳添加比例(b)的鈣鈦礦薄膜SEM圖..................14圖2.3未添加以及最佳添加比例的(a) PL圖譜以及(b) TRPL圖譜....

..........14圖2.4不同MeO添加比例下的鈣鈦礦薄膜SEM圖,(a)MeO0、(b) MeO10、(c) MeO20.......................................................16圖2.5不同比例之添加劑對結晶過程之影響示意圖.........................16圖2.6 (a) PEAI 、(b) CH3-PEAI、 (c) CH3O-PEAI、 (d) NO2-PEAI、 (e) MEAI 分 子結構...............................................

.........17圖2.7添加各項胺鹽之鈣鈦礦表面之SEM圖..............................18圖2.8添加CH3O-PEAI的鈣鈦礦元件穩定度數據圖.........................19圖2.9 BZA鹵素鹽類(a)及元件結構(b)....................................20圖2.10 BZA鹽類添加後之薄膜XRD圖譜(a)及UV-Vis圖譜(b)...............20圖2.11 BZA鹽類添加後之SEM圖,原始鈣鈦礦(a、e)、BZACl (b、f)、BZAI (c、 g)、BZABr(

d、h)................................................20圖2.12 BZA鹽類添加後之Steady-state PL(a)以及TRPL(b)....................21圖2.13 BZA鹽類添加後之XPS圖譜......................................21圖2.14碘化咪唑結構圖................................................22圖2.15 添加不同濃度碘化咪唑(a)(b)、以及經熏製(c)(d)之鈣鈦礦薄膜XRD圖 譜.......

................................................22圖2.16 添加不同濃度碘化咪唑之鈣鈦礦薄膜SEM圖樣.....................23圖2.17 咪唑結構圖....................................................24圖2.18未添加(a)以及添加咪唑(b)之鈣鈦礦薄膜SEM圖樣...................24圖2.19未添加以及添加咪唑之鈣鈦礦薄膜XRD圖譜........................24圖2.20 (a) CH3NH3PbI3及(b) CH3NH3P

bI3-x(SCN)x之SEM圖..................25圖2.21 CH3NH3PbI3 以及CH3NH3PbI3-x(SCN)x之XRD圖譜..................26圖2.22添加KSCN以及NaSCN之鈣鈦礦薄膜XRD圖譜.....................27圖2.23未添加(a)以及添加KSCN(b)、NaSCN(c)之鈣鈦礦薄膜SEM圖樣........27圖2.24未添加以及添加KSCN、NaSCN之鈣鈦礦薄膜EQE圖譜(a)、UV-Vis圖譜 (b)、Rsh/Rs阻抗比值圖(c)。..........................

............28圖2.25未添加(a)(b)以及添加15 mol%(c)(d) NH4SCN之鈣鈦礦薄膜SEM圖 樣.....................................................29圖2.26各個添加比例之鈣鈦礦薄膜(a)PL圖譜以及(b)SCLC曲線............29圖2.27常見的離子液體陽離子與陰離子類型..............................31圖2.28 添加1.5 wt% EMIC前(a)後(b)之鈣鈦礦薄膜SEM圖................32圖2.29添加1.5 wt% E

MIC後元件之(a)XRD圖譜、(b) UV–vis吸收光譜、(c)PL圖 譜(d)J-V曲線圖、(e)EQE光譜、(f)Nyquist曲線圖.....................32圖2.30 BMII結構圖....................................................33圖2.31由BMII引導的鈣鈦礦結晶機制示意圖.............................33圖2.32添加BMII後之鈣鈦礦薄膜SEM圖..............................34圖2.33 BMIMBF4結構圖.........

......................................35圖2.34鈣鈦礦薄膜之XPS比較圖.......................................35圖 2.35 BMIMBF4元件效率之穩定性測試.................................36圖2.36 MPIB結構圖...............................................37圖 2.37添加MPIB前後之鈣鈦礦晶體SEM圖...........................38圖 2.38 MPIB添加與原始鈣鈦礦之(a) XPS圖

譜(b) FT-IR圖譜................38圖2.39 EMIMBF4結構圖...............................................39圖2.40新型態鈣鈦礦晶體形成機制示意圖................................40圖2.41新型態鈣鈦礦晶體之XRD圖譜...................................40圖2.42新型態鈣鈦礦晶體之SEM圖.....................................40圖2.43最佳添加比例之新型態鈣鈦礦晶體之SEM圖.............

...........41圖2.44三種離子液體(a) EMIMBr、(b) EMIMSCN、(c) EMIMDCI之分子結構。....................................................43圖3.1 EMIMSCN NMR Spectrum.........................................45圖3.2 EMIMSCN結構圖................................................45圖3.3 EMIMDCI NMR Spectrum........................

.................46圖3.4 EMIMDCI結構圖................................................46圖4.1.1 添加不同濃度EMIMBr之元件J-V曲線圖..........................57圖4.1.2 添加不同濃度EMIMBr之元件IPCE圖譜..........................57圖4.1.3 添加不同濃度EMIMBr之鈣鈦礦薄膜XRD圖譜....................59圖4.1.4 未添加EMIMBr(Ref.)之鈣鈦礦薄膜SEM圖像...................

...60圖4.1.5 添加1 wt% EMIMBr(Br1)之鈣鈦礦薄膜SEM圖像...................60圖4.1.6 添加3 wt% EMIMBr(Br3)之鈣鈦礦薄膜SEM圖像...................60圖4.1.7 添加5 wt% EMIMBr(Br5)之鈣鈦礦薄膜SEM圖像...................61圖4.1.8 添加不同濃度EMIMBr之鈣鈦礦薄膜UV-Vis圖譜...................62圖4.1.9添加不同濃度EMIMBr之鈣鈦礦薄膜PL圖譜.......................63圖4.1.10 (a)Ref

.、(b)Br1、(c)Br3、(d)Br5之純電子(electron-only)元件之I-V特性曲 線圖..................................................65圖4.2.1添加不同濃度EMIMDCI之元件J-V曲線圖.........................67圖4.2.2添加不同濃度EMIMDCI之元件IPCE圖譜.........................68圖4.2.3添加不同濃度EMIMDCI之鈣鈦礦薄膜XRD圖譜...................69圖4.2.4未添加EMIMDCI(Ref.)之鈣鈦礦薄膜

SEM圖像.....................70圖4.2.5添加1 wt% EMIMDCI(DCI1)之鈣鈦礦薄膜SEM圖像................71圖4.2.6添加3 wt% EMIMDCI(DCI3)之鈣鈦礦薄膜SEM圖像................71圖4.2.7添加5 wt% EMIMDCI(DCI5)之鈣鈦礦薄膜SEM圖像................71圖4.2.8添加不同濃度EMIMDCI之鈣鈦礦薄膜UV-Vis圖譜.................72圖4.2.9添加不同濃度EMIMDCI之鈣鈦礦薄膜PL圖譜......................7

4圖4.2.10 (a)Ref.、(b)DCI1、(c)DCI3、(d)DCI5之純電子(electron-only)元件之I-V特 性曲線圖....................................................75圖4.3.1 添加不同濃度EMIMSCN之元件J-V曲線圖........................77圖4.3.2 添加不同濃度EMIMSCN元件之IPCE圖譜........................78圖4.3.3 添加不同濃度EMIMSCN之鈣鈦礦薄膜XRD圖譜..................79圖4.3.4

未添加EMIMSCN(Ref.)之鈣鈦礦薄膜SEM圖像....................80圖4.3.5 添加1 wt% EMIMSCN(SCN1)之鈣鈦礦薄膜SEM圖像...............81圖4.3.6 添加3 wt% EMIMSCN(SCN3)之鈣鈦礦薄膜SEM圖像...............81圖4.3.7 添加5 wt% EMIMSCN(SCN5)之鈣鈦礦薄膜SEM圖像...............81圖4.3.8 添加不同濃度EMIMSCN之鈣鈦礦薄膜UV-Vis圖譜.................83圖4.3.9 添加不同濃度EMIMSCN之鈣鈦礦薄膜PL圖譜

....................84圖4.3.10 (a)Ref.、(b)SCN1、(c)SCN3、(d)SCN5之純電子(electron-only)元件之I-V 特性曲線圖..................................................85圖4.4.1 EMIMBr、EMIMDCI、EMIMSCN三者之分子結構圖.................86圖4.4.2三種離子液體添加劑之鈣鈦礦薄膜SEM圖像.......................89

第一支火箭:被戰火推進的航太史

為了解決太陽輻射比例的問題,作者張天蓉 這樣論述:

火箭研發|阿波羅計畫|尋找黑洞|殖民火星 《宇宙零時》作者張天蓉的又一經典力作 一本適合所有天文愛好者的精彩航太史!   ▪從美夢到噩夢:火箭誕生的血淚史   二次大戰期間,液體火箭製作師馮·布朗在1930年代的任務,是開發液體燃料火箭(A4火箭)。他腦海中無疑經常夢想到月球旅行,因為A4火箭上畫的是科幻片《月亮中的女人》的宣傳畫,他甚至還制定了載人航太飛行計畫!   但納粹分子不要「登月」,也不在乎是否進入「太空」,他們做的是製造武器、屠殺人類的另一種夢。從1943年開始,布朗研發的A4火箭變成了V2導彈,意為德文「復仇武器(Vergeltungswaffe)」,企圖扭轉德軍的敗局。

  馮·布朗的夢想指向太空,但命運卻讓他擊中了倫敦,殺害了不少無辜的民眾。正如他在聽到倫敦被擊中的消息後說:   「火箭工作正常,除了登陸在了錯誤的星球上。」    ▪從一顆衛星開始:令全球顫慄的美蘇太空競賽   第二次世界大戰之後,世界力量重組,美蘇兩大巨頭都各懷鬼胎,想要率先發射人造衛星顯示國力。   1955年7月29日,美國總統艾森豪得意揚揚地宣布:「美國將於1957年發射第一枚人造衛星!」   但美國人大而化之,對蘇聯太空計畫的細節不得而知,也由此小看了敵方的科技力量。而就在1957年10月4日,蘇聯就宣布發射了第一顆人造衛星「史普尼克1號」!   蘇聯搶先發射人造衛星的消息,美

國媒體一片嘲諷,科技界人士沮喪,民眾則有些驚慌,以為美國如今「技不如人」。雖然艾森豪總統及時發表電視演說,祝賀蘇聯的成就,並保證國家安全,但美國股票市場仍然遭受重創,這個事件也拉開了美蘇太空競賽的帷幕。   『地球是人類的搖籃,但人類不會永遠被束縛在搖籃裡!』   ▪阿波羅13號的奇蹟:「自由返回軌道」神救援   美國的第三次登月計畫「阿波羅13號」,在太空船發射兩天之後,服務艙的氧氣罐爆炸,太空船嚴重毀損,失去大量氧氣和電力──如此大的爆炸,太空人究竟是如何奇蹟生還?   按常理來說,爆炸後應該盡快返回地球,但直接掉頭必須先迫使太空船速度反向,這需要很大的推力。而供給推力的服務推進系統正

好位於發生事故的服務艙尾部,如果點火燃燒推進系統,很有可能又引起爆炸。因此,指揮中心決定利用「自由返回軌道」返回地球。   所謂「自由返回軌道」的方法,指的是「借月球一臂之力」,充分利用月球引力的自然助推作用,使得太空船轉向返回。   「阿波羅13號」使用登月艙的降落火箭,稍作機動變軌進入到「自由返回軌道」。然後,待登月艙繞過月球背面後,降落火箭被點燃,以加速登月艙返回地球的速度,最後順利地進入地球軌道並安全返回地面。      ▪末日之後:移民火星需要克服什麼?   儘管目前的火星並不適合人類居住,但不少人相信,火星的環境可以透過現有技術逐漸改變,那人類移民火星究竟會碰到什麼樣的困難?   

[極端環境]   人類得先在火星土壤引進細菌和策略性植物,逐步建立一個人造生物圈,達到改變環境、改變大氣層的厚度和成分的目的,使火星越來越適合高等生物的居住。   [大氣稀薄]   火星的大氣層僅相當於地球大氣層的0.7%,只可以抵擋部分的太陽輻射和宇宙線,且氧氣不足,二氧化碳的比例卻又遠遠高於人類中毒的極限值。因此一開始移民的人類,只能在人造建築物或改造的火星洞穴中生活,且必須配有壓力設備,以維持足夠的氣壓。   [能源匱乏]   以上種種方法,都需要能源維持。一開始可以考慮地球上帶去燃料,為長遠之計則需要考慮如何利用火星上的資源產生能量,而不是長期依賴於地球的原料供給。   飛向瑰麗宇宙

,探索浩瀚無垠,   沒有哪一門科學,能像航太這樣充滿幻想色彩!   ★本書以第二次世界大戰後美蘇的太空競爭為線索,插入一些當事人和研究者的逸聞趣事,將航太方面的科學技術發展穿插其中!       ★本書沒有數學公式,適合所有愛好科學的大眾閱讀,包括各個年齡層次的文科讀者,讓你在輕鬆遨遊星際的過程中,也能充分領略宇宙的知識與美感!  

結合再生能源與魚菜共生以實現食物永續生產

為了解決太陽輻射比例的問題,作者胡秋艾 這樣論述:

摘要由全球暖化所致的氣溫升高和極端氣候正影響著世界各地,再過往的數十年中,人們已經投入許多努力來抑制這些影響並期望達成永續發展。身為經濟體中的一員面對著全球人口上升和天然資源耗竭的情況,農作栽種及糧食安全成了我們生活中重要的議題。魚菜共生透過魚類與植作所形成的養分循環減少了農藥及肥料的使用,進而形成了一種創新的永續農業經營方式,透過結合再生能源的電力供應則更能將其永續發展性向上提升。利用再生能源結合魚菜共的開發生雖已有部分學者嘗試進行,但實際的成效仍屬有限,即使再生能源對生態、經濟和科技發展皆有所助益,考量到科技應用的高成本及完整生命週期的操作配置,能源的裝置規畫仍須透過完整的評估後方能來實

現。本研究透過分析氣象數據及太陽輻射、風速、能源需求和溫室構造等能源相關因素建立能源混成模型,在實驗規劃時間內依據能源之變動需求及各供應來源之不同特性,以最大化太陽能及風力發電量為目標,利用混合整數規劃來找尋整體能源混成系統的最佳太陽能光電陣列規模、風機數量及儲能設備容量。所述之數學規劃將透過在越南富國島上經營農場的成功魚菜共生案例作執行驗證,依循實務的解決方案提升再生能源的供給與儲能效率,並進而使魚菜共生結合太陽能及風力發電來達成更長遠的永續發展為本研究之主要貢獻。本文之主要貢獻包括提高可再生能源服務和儲存效率的現實解決方案,使得魚菜共生在整合太陽能與風能方面更具永續性。並且藉由可再生能源和

傳統能源之間的平衡比例,本研究以最小的年度成本決定了最佳混合能源系統規模。因此,農民或投資者可以評估他們每年能夠承受的投資額。同時,碳稅代表環境因素,較高的單位碳稅將會影響溫室氣體的排放量並激勵更多可再生能源的使用。而為了達到永續魚菜共生系統,上述的發現不只是本研究的主要結果,亦指出了可再生能源在未來需要克服儲存成本的負擔,期望其可降低價格,以促進在整個系統中實現100%的可再生能源使用。