mos電容的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列訂位、菜單、價格優惠和問答集

mos電容的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦施敏,李義明,伍國珏寫的 半導體元件物理學第四版(上冊) 和劉傳璽,陳進來的 半導體元件物理與製程:理論與實務(四版)都 可以從中找到所需的評價。

另外網站國立交通大學電機學院電子與光電學程也說明:容的電容值,並藉此來改變VCO 電路的振盪頻率。因為VCO 電路在CMOS 製程. 中所使用的可變電容是金氧半導體(Metal-Oxide-Semiconductor, MOS)電容,然.

這兩本書分別來自國立陽明交通大學出版社 和五南所出版 。

國立暨南國際大學 電機工程學系 鄭義榮所指導 彭維凡的 自形成薄膜在內連接導線之研究 (2021),提出mos電容關鍵因素是什麼,來自於SiO2、自阻障層 (SFB)、low-k 材料、自組裝單層 (SAMs)、阻障層、可靠度、電致遷移。

而第二篇論文國立陽明交通大學 電子研究所 林詩淳所指導 劉博寧的 利用物理和機器學習來簡化元件建模 (2021),提出因為有 元件建模、機器學習、半導體元件物理的重點而找出了 mos電容的解答。

最後網站mos管寄生电容的影响有多大?你可能永远都想不到! - bilibili則補充:

接下來讓我們看這些論文和書籍都說些什麼吧:

除了mos電容,大家也想知道這些:

半導體元件物理學第四版(上冊)

為了解決mos電容的問題,作者施敏,李義明,伍國珏 這樣論述:

最新、最詳細、最完整的半導體元件參考書籍     《半導體元件物理學》(Physics of Semiconductor Devices)這本經典著作,一直為主修應用物理、電機與電子工程,以及材料科學的大學研究生主要教科書之一。由於本書包括許多在材料參數及元件物理上的有用資訊,因此也適合研究與發展半導體元件的工程師及科學家們當作主要參考資料。     Physics of Semiconductor Devices第三版在2007 年出版後(中譯本上、下冊分別在2008 年及2009 年發行),已有超過1,000,000 篇與半導體元件的相關論文被發表,並且在元件概念及性能上有許多突破,顯

然需要推出更新版以繼續達到本書的功能。在第四版,有超過50% 的材料資訊被校正或更新,並將這些材料資訊全部重新整理。     全書共有「半導體物理」、「元件建構區塊」、「電晶體」、「負電阻與功率元件」與「光子元件與感測器」等五大部分:第一部分「半導體物理」包括第一章,總覽半導體的基本特性,作為理解以及計算元件特性的基礎;第二部分「元件建構區塊」包含第二章到第四章,論述基本的元件建構區段,這些基本的區段可以構成所有的半導體元件;第三部分「電晶體」以第五章到第八章來討論電晶體家族;第四部分從第九章到第十一章探討「負電阻與功率元件」;第五部分從第十二章到第十四章介紹「光子元件與感測器」。(中文版上冊

收錄一至七章、下冊收錄八至十四章,下冊預定於2022年12月出版)   第四版特色     1.超過50%的材料資訊被校正或更新,完整呈現和修訂最新發展元件的觀念、性能和應用。     2.保留了基本的元件物理,加上許多當代感興趣的元件,例如負電容、穿隧場效電晶體、多層單元與三維的快閃記憶體、氮化鎵調變摻雜場效電晶體、中間能帶太陽能電池、發射極關閉晶閘管、晶格—溫度方程式等。     3.提供實務範例、表格、圖形和插圖,幫助整合主題的發展,每章附有大量問題集,可作為課堂教學範例。     4.每章皆有關鍵性的論文作為參考,以提供進一步的閱讀。

自形成薄膜在內連接導線之研究

為了解決mos電容的問題,作者彭維凡 這樣論述:

本研究探討兩種自形成薄膜在內連接導線之應用,分別為自形成阻障層(Self-forming barrier;SFB) 與自組裝單層 (Self-assembly monolayers;SAMs);本研究主要針對電性及可靠度等特性作探討;第一部份為自形成阻障層的研究:將銅鈧 (CuSc) 合金沉積在 SiO2 材料上,探討退火前後其電性及可靠度等特性;研究結果指出,在經過退火製程後,銅鈧合金中的鈧遷移至金屬和氧化層交界處形成一層反應層,且由電應力測試結果得知,此形成的反應層可有效的阻擋銅離子擴散,作為銅金屬的阻障層;同時,此自形成阻障層可增加絕緣層的崩潰強度與強化銅鈧合金金屬導線對抗電致遷移的能

力;因此,利用銅鈧合金形成的自形成阻障層可有效加強電性、電致遷移及可靠度等特性。第二部份則研究自組裝單層:使用癸基三甲氧基矽烷 (Decyltrimethoxysilane;DTMOS) 作為自組裝單層的前驅物,藉由氣態法沉積在多孔低介電常數 (low-k) 材料上,探討對多孔 low-k 材料電性及可靠度特性之影響,並比較不同沉積溫度的氣態自組裝單層前後的差異;由實驗結果得知經過 DTMOS 蒸氣處理後,成功地成長了 SAMs,SAMs 的形成除了將多孔 low-k 薄膜表面恢復成疏水性,並且改善了多孔 low-k 薄膜的電性和可靠度;由電應力的測試結果得知,SAMs 可有效的阻擋銅離子的擴

散,也可作為銅擴散的阻擋層;由拉力測試結果得知,SAMs 的形成可有效增加銅與多孔 low-k 薄膜的附著力;由實驗結果得知,當使用氣態法沉積時,溫度越高,所生成的 SAMs 所帶來的改善更加顯著;因此,本研究利用氣態法沉積 SAMs 在多孔 low-k 薄膜上的製程,形成 SAMs,對於多孔 low-k 薄膜的電性及可靠度等特性,可有效提升。

半導體元件物理與製程:理論與實務(四版)

為了解決mos電容的問題,作者劉傳璽,陳進來 這樣論述:

  以深入淺出的方式,系統性地介紹目前主流半導體元件(CMOS)之元件物理與製程整合所必須具備的基礎理論、重要觀念與方法、以及先進製造技術。內容可分為三個主軸:第一至第四章涵蓋目前主流半導體元件必備之元件物理觀念、第五至第八章探討現代與先進的CMOS IC之製造流程與技術、第九至第十二章則討論以CMOS元件為主的IC設計和相關半導體製程與應用。由於強調觀念與實用並重,因此儘量避免深奧的物理與繁瑣的數學;但對於重要的觀念或關鍵技術均會清楚地交代,並盡可能以直觀的解釋來幫助讀者理解與想像,以期收事半功倍之效。     本書宗旨主要是提供讀者在積體電路製造工程上的know-how與know-wh

y;並在此基礎上,進一步地介紹最新半導體元件的物理原理與其製程技術。它除了可作為電機電子工程、系統工程、應用物理與材料工程領域的大學部高年級學生或研究生的教材,也可以作為半導體業界工程師的重要參考   本書特色     ●包含實務上極為重要,但在坊間書籍幾乎不提及的WAT,與鰭式電晶體(Fin-FET)、環繞式閘極電晶體(GAA-FET)等先進元件製程,以及碳化矽(SiC)與氮化鎵(GaN)功率半導體等先進技術。     ●大幅增修習題與內容,以求涵蓋最新世代積體電路製程技術之所需。     ●以最直觀的物理現象與電機概念,清楚闡釋深奧的元件物理觀念與繁瑣的數學公式。     ●適合大專以上學

校課程、公司內部專業訓練、半導體從業工程師實務上之使用。

利用物理和機器學習來簡化元件建模

為了解決mos電容的問題,作者劉博寧 這樣論述:

隨著摩爾定律,半導體中技術節點的收縮,工作電壓和電流也隨之縮小,這意味著元件的電性特性很容易受到其他新效應或未知效應的影響,例如短通道效應,僅僅通過物理來構建精簡模型將是一項艱鉅的任務,最近,基於機器學習的精簡模型提供了一種與基於物理的精簡模型相比的替代方法,因為它具有過程感知能力、可擴展性、新興元件的可用性。本論文分為兩部分,第一部分是關於MOS電容器(MOSCAP),一般來說,訓練機器學習模型時,我們需要大量的數據,因此,為了減少收集的數據,我們將物理模型生成的理論數據和測量數據結合起來,從這兩種數據,我們介紹了半監督多任務學習模型(SSMTL),且SSMTL的均方根誤差(RMSE)為1

.6715,參考 MLP為3.1387。第二部分是關於電阻式隨機存取存儲器(RRAM),我們的目標是在Verilog-A和HSPICE中,應用機器學習模型,為了實現這一點,我們必須簡化我們的模型,因此,我們在基於機器學習的精簡模型中,為RRAM引入了一種具有良好精度的物理架構,且我們成功地將模型實現在電路模擬中。